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Time-Domain Vector-Potential Analysis
of Transmission-Line Problems

Natalia GeorgievaStudent Member, IEEEand Eikichi YamashitaFellow, IEEE

Abstract—A time-domain vector-potential (TDVP) approach consecutive parts with less memory load, but with the same
for the analysis of transient electromagnetic fields is proposed in computation time. As will be shown below, the decoupling of
this paper. The field is analyzed by the magnetic VP for which the the A components is not generally true, e.g., in the case of a

wave equation is solved by a finite-difference (FD) scheme. The . . . L
feasibility of the method has been shown by simulations of several sharp change of the dielectric constant (dielectric interface) or

transmission-line problems. The results have been compared with in the vicinity of edges and wedges.
reported data obtained by the conventional finite-difference time- ~ The possibility for a reduction of the computation time by

domain (FDTD) method, empirical formulas, and measurements. the solution of three wave equations instead of the Maxwell’s
The proposed approach is not inferior to the FDTD method in ¢\ equations was observed and applied in some modifications

terms of generality and memory requirements. At the same time, - - . - .
a reduction of central processing unit (CPU) time is achieved Of the conventional finite-difference time-domain (FDTD)

because only three scalar wave equations are solved instead of thealgorithm [6], [7]. Both [6] and [7] show a successful ana_[ySiS
six Maxwell equations for all field components. It has also been of the field propagation only in terms of the electric fidid
shown that .there are certain structures yvhere the components of for which the wave equation is solved. In [6], the algorithm is
the magnetic VP are decoupled, which implies the possibility for 1,504 on 4 direct solution of the vector wave equation where
a consecutive algorithm with reduced memory requirements. =
all three components aF are coupled through th& x V x
Index Terms—Electromagnetic transient propagation, FDTD  gperator. In [7], the vector wave equation is further reduced to
method, time-domain analysis. three independent scalar wave equations for all homogeneous
subregions where the conditidn - E = 0 holds. The solution
|. INTRODUCTION is coupled with the vector wave equation at nondivergence-
ee regions. In [6] and [7], a reduction of central processing
nit (CPU) time of approximately 30%—-35% was reported.
mputer-memory requirements of the algorithm presented in
were reduced by approximately 1/3 in the case of planar
ctures.

HE construction of solutions in terms of vector potentialtaI

(VP’s) is a well-known approach in electromagnetics. A
important advantage of the field VP’s is that they are smoot
functions of space than the field vectors in the vicinity

sources and sharp discontinuities such as edges, Wedﬁér : . .
and corners. Besides that, the electromagnetic field can b n this paper, we propose a finite-difference (FD) time—space

described by a reduced number of scalar functions where Fh%oroach which IS based on the calculation .4fby the
choice of the VP depends on the boundary conditions aﬁaalar_ wave equatlo_ns. It h_as all advantages of the wave-
excitation [1]. equation an_al_y_ses briefly reviewed apove—reduced CEU time
VP approaches are often applied in frequency-domain an fld a possibility foj-memory reductlop_whgn decoupl_mg- of
ysis. However, in time-domain methods there are only a fe e components ofd is present. In.addmon, its versatility is
examples for the application of the VP's, which can be foun e same as that of th_e conventional FDTD method. There
exclusively in the algorithms based on the time-domain surfaBls ©€ases where the field could agtually be rep-resented by
integral equations [2]-[4]. There the VP’s are viewed as tlﬁn.ly_ twq or even one component oﬁ €.9. scattgrlng from
free-space contribution of equivalent surface currents and HPB”'teS"T‘a”V thin perfect!y cqnductlng plates, wire antennas,
computed mostly via integration. The possibility for a finite€tC: Its |mplementat_|0n IS S|r_nple and can be ge_nerahzed
difference time—space analysis based on the wave equa¢%ncomplex geometrles._As W'.th all FD scheme_s, it suffers
of the magnetic vPA was first observed in [5], where it is rom two basic shortcomings—it needs an absorbing boundary

noted that although the approach has never been implemerﬁgﬂd;tlond (AE(’jC.) hwhenever Qut\llvg_rd prc.)paggtlpln IS tho $e
it would prove not only faster, but also advantageous (i mulated, and it has a numerical dispersion similar to the Yee

respect to memory requirements) since the solutions for A orithm for a given ratio of the discretization steps in space

three components oft are decoupled into three scalar Wavgnd time. On the other hand, the smoother behavior of the VP

equations after the Lorentz's gauge condition is impose'&. the vicinity _of sharp d|sc_ont|ng|t|e_s implies less numerical
rors for a given space discretization.

Thus, the overall computation could be separated into thr@
. . ) . Il. B
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Maxwell equations, it follows that the field vectods and ¢ which follows from the continuity of the tangentia‘f
H are related to the magnetic VR and the electric scalar components and the first of (8)

potential ¢ as 1 <8A§Ll) aAél) 8A§1)>
= 1 + 2
- g a a
B _ % — vy (1) [to€L n 31 13
1 (oA P oaZy
"= EV XA @) poc2 \  On 31 & |

The VP A satisfies the wave equation Bearing in mind t?la;t @ ‘
. aQA, . Agz - A 00 1= ].7 2
AA - He g = —ud (3) one more relation for thel,, component is obtained as follows:
DAL oA 0As, | DAy
:(61—62)< IR 2). (10)

if the scalar potential is related td by the Lorentz's gauge “275 = ~ <17 5~ 9E, 9Es
condition Equations (7) and (10) completely define the valugigfat the
uea—(p - _v.A (4 interface. It is worth noting that the presence of a dielectric-to-
ot ' dielectric interface couples the normal component4ofvith

From (4), it follows that the field vectors can be convenientl§S tangential components. First, the tangential components
expressed only by the magnetic \/® as at the interface are updated independently using their most

. . recent values at the internal points of the neighboring regions.
ok P?A 1 - Then, the computation of the most recent values of the
—=—-—-5>+—VV. A4 (5) ; i
ot a2 e normal component at the interface takes place. Obviously, the

5 1 o components are decoupleddf = ez, and in this case, each
H=—VxA (6) component simply satisfies its wave equation.

Ho
o . 2) Electric Wall: This is a boundary at which the condition
From (3), it is obvious that the three VP components’

solutions are decoupled for all internal points of every ho-
mogeneous subregion. It can be solved for each componean be imposed. Typical examples are the infinite ground plane
of ffusing standard FD techniques. As will be shown belowf a microstrip-line structure (see Fig. 2) or the walls of a
coupling appears at conducting surfaces of finite extent amdveguide. Since

o(z,y,2,t) = const (11)

also at dielectric interfaces. AxE—=0 (12)
B. Boundary Conditions and Coupling of the (11)ﬂ|mplles that the boundary conditions for the components
of A are
VP Components at Interfaces A
Only planar boundaries and interfaces will be considered an =0 (13)
here because the derivation of the relations for the Cartesian A —o. (14)

components ofd is straightforward. It is also assumed that

there are no magnetic materials present in the structure. Thé) Magnetic Wall: This boundary condition is used when
unit normali is assumed to point from regions 1 to 2. Thdhe structure (including the excitation) is symmetrical in re-

normal component offt will be denoted byA,.. The tangential spect to a given plang. It is equivalent to setting the tangential
component of A will be denoted by components of theH field equal to zero. Therefore, the

boundary conditions ford in this case are defined as

A= Ag &+ Ag b A, =0 (15)
where (£, £,) are the unit tangents of the planar surface. 8(;4& =0, i=1,2 (16)
n

1) Dielectric Interfaces: The continuity of the tangentieﬁ
components leads to the following relations for the normal a
tangential components ofl at the interface

nd4) Infinitesimally Thin Finite-Size Conducting Patches at
Interfaces: In this case, (12) holds, as it holds also for the
ground plane. However, unlike the ground plane, the scalar

AL0 — A(2) (7) potential cannot be set equal to a constant. Hereafter, such
AW — @ conducting surfaces will be referred to fasating conductors
{1) Z(Q) At floating conductors of infinitesimally small thickness, the
A7 _ IA7 ) (8) value of the scalar potential is the same for both regions as
an an follows:
While (8) is enough to uniquely define the tangentidl (p(l) - (p(2)_ (17)

components, the normad,, component cannot be calculated
by the single relation (7). Here, an additional continuitfhe above relation is identical with (9) or (10). As follows
relation will be used—the continuity of the scalar potentidtom (12) and (17), the tangential components.4fshould
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also be continuous functior(sA{ = A i = 1,2), and can “ A, 0-4, e A
be calculated explicitly as
8A5. 8<p .
— = = = 1 2 18
ot ¢’ T (18) o) o) o
Substituting the Lorentz’s gauge condition in (18) leads to the
relation *
2 (1)
0° A, _ 1 9 {0A; n O0Ae, n 0A, @9 o o o
at? pocr 9& \  On 23 &2
The continuity of the scalar potential implies that the same ¢
value for A¢, would be obtained if the equation 2
(2) @] O
PA, 10 (04D oAy | 04 1, L.,
I ez DG\ On | 06 | o0& ) T

is used. Once the tangentiﬁ components are updated, the':I
values of the.4,, component at the conducting patch are | A
computed using relations identical to (7) and (10).

It must be noted that although the procedure for the calcula-
tion of the 4,, component at dielectric-to-dielectric interfaces
and at infinitesimally thin floating conductors is the same
as it follows from the continuity of the scalar potential, the
procedure for the tangential components is entirely different,
as is seen from (8) and (19). While at dielectric-to-dielectric
interfaces, thed, components are self-dependent, at conduct-
ing interface patches they depend on the normal derivative of
A,. The points at such patches become points of generation
of A} under the influence a#i,,. When the interface patch is
immersed in a homogeneous regitn = ¢),.4, no longer
depends ond, [see (10)], but it still generates the values of
the tangential components through (19).

5) Conducting Bodies of Finite Sizéhe application of
the boundary condition (12) at the surface of a conducting
body of a finite size is less complicated than the previous

case. It includes the condition
A, Fig. 2. Computational domain for the microstrip open end.

— = (20)
. on . difference scheme. These operators are encountered in the
at all surface points not coinciding with wedges and corners

Since the tangential components are again obtained by (19)’oundary-cond|t|on relations (10) and (19).

can be shown that counling amond tAecomponents anpears '}AII three components otd are calculated at the same
ping 9 P PP moments of timet = kAt. This also refers to théd field.

exactly at the edge points of the surface. This phenomen?ﬂe electric fieldE is calculated att — (k + 1/2)At, as

is best described when th; component is displaced fromyq ;s from (5). The field vectors are not needed in the

the (A¢;, Ag, ) components by a half-space step alongdhe pagic aigorithm. They are calculated for the purpose of post-
coordinate. Here(&i .5,k = 1,2,3,i # j # k) denote r4cessing computations of the structure’s parameters only
the respective components gf (see Fig. 1). In the case of\when and where it is necessary.

infinitesimally thin conducting patches, it is numerically more The time-stepAt and the space-stefih are related to the
convenient to adjust the meshes of the normal and tangenfigyher speed of light in the structueeby

/1

components so that they coincide along the axis normal to the Ah
patch At = — (21)
. cq
1. N UMERICAL |MPLEMENTATION whereq should satisfy the Courant stability condition
N . | 72 V3.
A. Discretization of the Space-Time Domain In the presented simulationgyas set ta; = 2. The space-step

For the analysis of the planar structure in Fig. 2, theas to be chosen small enough in order to obtain accurate field
meshes of4,, A,, A. coincide along thes-axis. At every behavior at discontinuities and at higher frequencies. Usually
z = const plane, the components are displaced by half the following recommendation is followed [8], [11]:
step, as described at the end of the previous section and A< M 22)
in Fig. 1. This displacement gives the most exact numerical - 8
treatment of the surface operatdfsV,- andV,- by a central- Where Ay, is the shortest wavelength of interest.
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B. Defining the Excitation Pulse Section 1I-2. Here, the explicit discretized form of the bound-

The excitation pulse in the case of transmission-line proBy "elations at the dielectric interface only will be given (8),

lems is usually chosen to be a Gaussian pulse in time @& (10). Equations (13), (14)~(16), and (19) are implemented
in a similar manner.

follows: ) . .
The discretized form of (8) for the interface values of the

g(t) = exp[—a(t — ty)?] (23) tangential components of is

wheret, is the temporal moment at which the pulse is located. 4(A(1) +4P _ (A(l) +A® )
X . . . X A = 1 €11 2 E4o (29)
The Fourier transform of this pulse is a Gaussian function of €0 = 6 .
frequency . . .
Here, the superscripts denote the respective region, and the
GO ~ 2 f? o4 subscripts give the position along the normal of the interface
(f) mexp | — a | (24) which points from region 1 to region 2. In the derivation of this

i formula, the second-order backward/forward approximation of
If frequency data are needed up to a maximum frequency @ normal derivative has been used as follows:
Jfmax, then the pulse must have wide enough spectrum to cover

the (0+ fuax) band. The value oft must be chosen properly. ofF _ +3fi F4fiz1 £ fi:F?' (30)
On the other handy must be a function of the number of Ox 2Ah

time-steps3 from truncation to maximum of the time-domainEquations (7) and (10) lead to the following expression:
Gaussian pulse to ensure smooth enough launch of the pulse 1

S (1) (2) y_ (1) (2)
(5] 2 An, 3(61+62)[4(62An_1+61An+1) (240, +e1 A )
= (L 25 +2(e1—e2)(De, { A, }+De, {Ae, D]. (31)

=\5at) (25)

Here, the operatoD;, ¢ = 1,2 represents finite differences
If, for example, a truncation level of approximatel140 dB along the coordinaté;.
is desired, them has to be set tg = 4. We shall also require  Once A is calculated, the field vectors can be obtained by
that the spectrum of the Gaussian pulsefat. has at least the discretized form of (5) and (6) and used in the computation
a value ofG( fuax) = 0.1. The relation betweep and f....x  of certain parameters of the structure.
is readily obtained as

5 7/1n 10 26 D. The Transmitting Boundary for the Wave Equation
= T frnax At (26) The ABC's pose a serious problem for time-domain FD

The temporal step is firmly determined by (21). Therefore, tl'ehemes, and is still intensively studied. There are many
above equation can be written in terms)qf;,, and Ah as numerical approximations of the ABC, but they are either
Y ) with high memory and CPU time requirements, or their

g="1 In 10v/krer <)Xl}‘:) (27) performance is very much dependent on the angle of incidence

] ) ] ~and dispersion of the propagating pulse. Here, it was chosen to
where the ratio\,,in/Ah is set by (22). Equation (27) definesypply the first-order Liao extrapolation scheme [9], [10]. The

the appropriate width of the Gaussian pulse in time. boundary value is thus obtained by a second-order Lagrange
interpolation of the field values inside the region at a point

where location depends on the dielectric constant of the region

_Each componen{ = z,y, > of the auxiliary vectord = and the parametey, which was defined in (21).
A/(uoAh) is calculated by an explicit FD scheme of the

wave equation [8]

™

C. The FD Wave Equation and Boundary Relations

IV. RESULTS AND DISCUSSION

Dt?t{Af} = O‘Q(L{Af} +Jsg) (28) The results of the simulations of different microstrip-line
where: )a = 1/(q\/é-ftr,), % is the region index; 2). = discontinuities are presented—an open end, a gap, and a
D3, + D2, + D2 is the FD Laplace operator; and 3), is double change in the width of the line. The discontinuities
the excitation surface current (if present). are described by the dispersion of théirparameters. The
The excitation is in the form of surface currents because dispersion characteristics of the homogeneous microstrip line
the normalization ot4 in respect to the space steéph. The were also calculated using the incident-field transient data.

time derivative ofA, is first calculated as The geometry of the numerical region is shown in Fig. 2.
Kt1/2 K—1/2 ) N N The excitation plane is at = 0. The excitation is in the
Dy A = Dy At + ot (L{AGH + 5. form of J, electric currents, which are a Gaussian function

of time. While the pulse is launched, a symmetry condition
for A, and 4,, and an antisymmetry condition fod., are
A’g“ _ A’g +Df+l/2{A5}. |mpo_sgd _(mag_nenc wall). At a later moment, the radiation
condition is switched on so that reflections could be absorbed.
The boundary values of the VP components are calculatédis moment is carefully chosen after the pulse is entirely
by the discretized form of the boundary relations given ilaunched and before reflections could reach the back plane.

The value ofA; is then calculated as
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Fig. 3. Relative guide wavelengty /A4 of a microstrip lineze = 0.6 mm,  Fig. 5. |S11] for the open end. With crosses: as in [12], with line: current
h = 0.6 mm, e, = 9.6 mm. With boxes: empirical formula of Hammerstadapproach.

and Jensen [17], with crosses: empirical formula of Pramanick and Bhartia

[14], with triangles: results of Katehi and Alexopoulos [13], with diamonds: ¢ — . . . .

empirical formula of Edwards and Owens, dashed line: current approach.
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Fig. 4. Relative guide wavelengtty /A, of a microstrip linexw = 0.6 mm, .
h = 0.6 mm,e,, = 9.6 mm. With boxes: empirical formula of Kobayashi Ao/Ag = \/€r has been calculated as a function of frequency

[16], with crosses: empirical formula of Edwards and Owens [15], with triarand the results have been compared with those given in [13]
gles: results of Katehi and Alexopoulos [13], dashed line: current approacbfrequency_domam calculations), with the empirical formulas
of Pramanick and Bhartia [14], Edwards and Owens [15], and

Since all analyzed structures are symmetrical in respect to %Sbayashi [16] (see Fig. 3). The results of the present method

Y= Qplane., a magnetic-wall boundary conditions are imposegl, i very good agreement with the already existing data.
for A at this plane.

) ; ) ] ) The calculations for the characteristic impedangg| are
The dimensions of the numerical region are: 1) widtfresented in Fig. 4 and compared with those provided in
A = 4dw; 2) height B = 4h; and 3) lengthC' = 180Ah.  [13] with the empirical formulas of Edwards and Owens [15]
Here, Ah denotes the space discretization steps the strip 504 Hammerstad and Jensen [17]. Unlike the results for the
width, and# is the substrate thickness. propagation constant, there is quite a discrepancy inZgge
data obtained by the different methods. The results of the
time-domain vector-potential (TDVP) approach are closest to
The analyzed microstrip line has the following dimensionghe calculations with the formula of Hammerstad and Jensen,
w = 0.6 mm, h = 0.6 mm, and strip thicknessis assumed which is considered to be one of the best approximations in
equal to zero. The dielectric constant of the substrate,is=  the computer-aided design (CAD) of microstrips.
9.6. This structure was chosen for the purpose of comparison
with data reported in [11]-[13]. The dispersion characteristi®& Open-End Microstrip Line
of the line were obtained from the transient response of theThe open-end discontinuity was also analyzed by the TDVP
incident strip current and voltage at two reference poingpproach for various microstrip lines. Here, the results for the
along the line [11]. The relative guide propagation constasame microstrip line will be presented:= 0.6 mm, A = 0.6

A. Dispersion Characteristics of a Microstrip Line
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Fig. 7. Radiation conductandg s of the open-end line. With crosses: asFig. 9. |S;;| and|S.;| for the gap discontinuity. With boxes: as in [12],
in [12], with boxes: as in [13], with line: current approach. with lines: current approach.
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Fig. 8. Normalized capacitandg ) /w of the open-end line. With crosses: Fig. 10. |S,| and |S21| for the double step-in-width, discontinuity,
as in [12], with boxes: as in [13], with line: current approach. er, = 10.2. With thick lines: measurements, with lines: current approach.

mm, ¢, = 9.6. The magnitude of; is plotted in Fig. 5and is
compared with the results given in [12]. The same comparisé¥actly as in [12]. The results for the magnitudesSef and
is made for the phase &, in Fig. 6. The results obtained by S21 are shown in Fig. 9. While there is good agreement in
the present method are in good agreement with those obtaiifeel results for.S; |, |S2;| results show substantial difference
by the Yee FDTD algorithm for the magnitude 8f;, but there especially at lower frequencies. However, it must be noted that
are differences in the calculations of the phase dispersiontbé almost linear behavior of th&s |(f) curve provided in
S11. That is why the complexs;; was used to calculate the[12] is in some contradiction with the highly nonlinear curve
equivalent conductance (representing radiation losses) andéhesS;;|(f) at lower frequencies.
equivalent normalized capacitan€&/w for which data are
available in [12_] and [13]. These results_ are given in Figs.f pouble Step-in-Width Discontinuity
and 8, respectively. Thé&(f) curve obtained by the TDVP ) o o
algorithm has the same character as the one given in [12], puff he discontinuity is simulated for a transmission line of
it is shifted toward higher frequencies, i.e., toward the valugémensionsw = 0.56 mm andh = 0.64 mm. The dielectric
obtained by Katehi and Alexopoulos [13]. A shift towardronstant of the substrateds, = 10.2. The strip width changes
the frequency-domain results of [13] at higher frequencies filom w to wy = 2 w and back tow. The length of the strip
also observed in th€/(f)/w curve. Obviously, the equivalentwith a width ofw, is I; = 10 mm. This structure has resonant
parameters’ dispersion is very sensitive to even slight changeeperties and its investigation was important in order to verify
in the results for the complex reflection coefficient. the validity of the approach when lengthy calculations with
multiple reflected signals take place. It is well known that
the accumulated numerical errors in time-stepping procedures
This discontinuity was also simulated for the microstrip linbadly affect the late-time transient results. The reflection and
from the previous cases. The gap width is chosen 0.5h, transmission coefficient of a real test line with the above

C. Gap Discontinuity
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parameters were measured in order to provide some basis discontinuities,” IEEE Trans. Microwave Theory Teghvol. 36, pp.
for comparison with the simulated data. The experimental a?l%] 1775-1787, Dec. 1988.

P. B. Katehi and N. G. Alexopoulos, “Frequency-dependent characteris-

simulation results are presented in Fig. 10. tics of microstrip discontinuities in millimeter-wave integrated circuits,”

IEEE Trans. Microwave Theory Teghvol. MTT-33, pp. 1029-1035,
Oct. 1985.

V. CONCLUSION [14] P. Pramanick and P. Bhartia, “An accurate description of dispersion in

A TDVP technique for the analysis of transient fields, microstrip,” Microwave J, vol. 26, no. 12, pp. 89-96, Dec. 1983.

] K. C. Gupta, R. Garg, and R. Chadh@omputer-Aided Design of

is proposed in this paper and applied to transmission-line” Mmicrowave Circuits Norwood, MA: Artech House, 1981.
problems. This numerical approach has the advantage [l M. Kobayashi, “A dispersion formula satisfying recent requirements in

microstrip CAD,” IEEE Trans. Mircowave Theory Techeol. 36, pp.

decreased CPU time approximately 30% in comparison with ;5,:" 550" 0ct 1088,

the

FDTD method. A possibility for memory savings andi7] E. Hammerstad and O. Jensen, “Accurate models for microstrip

further reduction of computation time exists in applications to ~ computer-aided design,” IfEEE MTT-S Int. Microwave Symp. Djg.

specific problems like scattering and radiation from thin plates

Washington, DC, May 1980, pp. 407—4009.

and wires in a homogeneous medium. The advantages of the

VP time-domain analysis and its applicability to a wide variety

of problems is still to be investigated. So far, its feasibility has

been proven by the simulation of three types of microstrip-lir - Natalia Georgieva (S'93) received the Dipl. Eng.

discontinuities. Further improving of the ABC’s and increasin

the

numerical tool for the analysis of complex structures.
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