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of Transmission-Line Problems

Natalia Georgieva,Student Member, IEEE, and Eikichi Yamashita,Fellow, IEEE

Abstract—A time-domain vector-potential (TDVP) approach
for the analysis of transient electromagnetic fields is proposed in
this paper. The field is analyzed by the magnetic VP for which the
wave equation is solved by a finite-difference (FD) scheme. The
feasibility of the method has been shown by simulations of several
transmission-line problems. The results have been compared with
reported data obtained by the conventional finite-difference time-
domain (FDTD) method, empirical formulas, and measurements.
The proposed approach is not inferior to the FDTD method in
terms of generality and memory requirements. At the same time,
a reduction of central processing unit (CPU) time is achieved
because only three scalar wave equations are solved instead of the
six Maxwell equations for all field components. It has also been
shown that there are certain structures where the components of
the magnetic VP are decoupled, which implies the possibility for
a consecutive algorithm with reduced memory requirements.

Index Terms—Electromagnetic transient propagation, FDTD
method, time-domain analysis.

I. INTRODUCTION

T HE construction of solutions in terms of vector potentials
(VP’s) is a well-known approach in electromagnetics. An

important advantage of the field VP’s is that they are smoother
functions of space than the field vectors in the vicinity of
sources and sharp discontinuities such as edges, wedges,
and corners. Besides that, the electromagnetic field can be
described by a reduced number of scalar functions where the
choice of the VP depends on the boundary conditions and
excitation [1].

VP approaches are often applied in frequency-domain anal-
ysis. However, in time-domain methods there are only a few
examples for the application of the VP’s, which can be found
exclusively in the algorithms based on the time-domain surface
integral equations [2]–[4]. There the VP’s are viewed as the
free-space contribution of equivalent surface currents and are
computed mostly via integration. The possibility for a finite-
difference time–space analysis based on the wave equation
of the magnetic VP was first observed in [5], where it is
noted that although the approach has never been implemented
it would prove not only faster, but also advantageous (in
respect to memory requirements) since the solutions for the
three components of are decoupled into three scalar wave
equations after the Lorentz’s gauge condition is imposed.
Thus, the overall computation could be separated into three
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consecutive parts with less memory load, but with the same
computation time. As will be shown below, the decoupling of
the components is not generally true, e.g., in the case of a
sharp change of the dielectric constant (dielectric interface) or
in the vicinity of edges and wedges.

The possibility for a reduction of the computation time by
the solution of three wave equations instead of the Maxwell’s
curl equations was observed and applied in some modifications
of the conventional finite-difference time-domain (FDTD)
algorithm [6], [7]. Both [6] and [7] show a successful analysis
of the field propagation only in terms of the electric field
for which the wave equation is solved. In [6], the algorithm is
based on a direct solution of the vector wave equation where
all three components of are coupled through the
operator. In [7], the vector wave equation is further reduced to
three independent scalar wave equations for all homogeneous
subregions where the condition holds. The solution
is coupled with the vector wave equation at nondivergence-
free regions. In [6] and [7], a reduction of central processing
unit (CPU) time of approximately 30%–35% was reported.
Computer-memory requirements of the algorithm presented in
[7] were reduced by approximately 1/3 in the case of planar
structures.

In this paper, we propose a finite-difference (FD) time–space
approach which is based on the calculation of by the
scalar wave equations. It has all advantages of the wave-
equation analyses briefly reviewed above—reduced CPU time
and a possibility for memory reduction when decoupling of
the components of is present. In addition, its versatility is
the same as that of the conventional FDTD method. There
are cases where the field could actually be represented by
only two or even one component of, e.g., scattering from
infinitesimally thin perfectly conducting plates, wire antennas,
etc. Its implementation is simple and can be generalized
to complex geometries. As with all FD schemes, it suffers
from two basic shortcomings—it needs an absorbing boundary
condition (ABC) whenever outward propagation is to be
simulated, and it has a numerical dispersion similar to the Yee
algorithm for a given ratio of the discretization steps in space
and time. On the other hand, the smoother behavior of the VP
in the vicinity of sharp discontinuities implies less numerical
errors for a given space discretization.

II. BASIC EQUATIONS

A. VP Formulation

Potential functions are typically introduced to represent
the fields created by induced currents and charges which
are related to the currents via the continuity relation. From
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Maxwell equations, it follows that the field vectors and
are related to the magnetic VP and the electric scalar

potential as

(1)

(2)

The VP satisfies the wave equation

(3)

if the scalar potential is related to by the Lorentz’s gauge
condition

(4)

From (4), it follows that the field vectors can be conveniently
expressed only by the magnetic VP as

(5)

(6)

From (3), it is obvious that the three VP components’
solutions are decoupled for all internal points of every ho-
mogeneous subregion. It can be solved for each component
of using standard FD techniques. As will be shown below,
coupling appears at conducting surfaces of finite extent and
also at dielectric interfaces.

B. Boundary Conditions and Coupling of the
VP Components at Interfaces

Only planar boundaries and interfaces will be considered
here because the derivation of the relations for the Cartesian
components of is straightforward. It is also assumed that
there are no magnetic materials present in the structure. The
unit normal is assumed to point from regions 1 to 2. The
normal component of will be denoted by . The tangential
component of will be denoted by

where are the unit tangents of the planar surface.
1) Dielectric Interfaces:The continuity of the tangential

components leads to the following relations for the normal and
tangential components of at the interface

(7)

(8)

While (8) is enough to uniquely define the tangential
components, the normal component cannot be calculated
by the single relation (7). Here, an additional continuity
relation will be used—the continuity of the scalar potential

which follows from the continuity of the tangential
components and the first of (8)

(9)

Bearing in mind that

one more relation for the component is obtained as follows:

(10)

Equations (7) and (10) completely define the value ofat the
interface. It is worth noting that the presence of a dielectric-to-
dielectric interface couples the normal component ofwith
its tangential components. First, the tangential components
at the interface are updated independently using their most
recent values at the internal points of the neighboring regions.
Then, the computation of the most recent values of the
normal component at the interface takes place. Obviously, the
components are decoupled if , and in this case, each
component simply satisfies its wave equation.

2) Electric Wall: This is a boundary at which the condition

(11)

can be imposed. Typical examples are the infinite ground plane
of a microstrip-line structure (see Fig. 2) or the walls of a
waveguide. Since

(12)

(11) implies that the boundary conditions for the components
of are

(13)

(14)

3) Magnetic Wall: This boundary condition is used when
the structure (including the excitation) is symmetrical in re-
spect to a given plane. It is equivalent to setting the tangential
components of the field equal to zero. Therefore, the
boundary conditions for in this case are defined as

(15)

(16)

4) Infinitesimally Thin Finite-Size Conducting Patches at
Interfaces: In this case, (12) holds, as it holds also for the
ground plane. However, unlike the ground plane, the scalar
potential cannot be set equal to a constant. Hereafter, such
conducting surfaces will be referred to asfloating conductors.
At floating conductors of infinitesimally small thickness, the
value of the scalar potential is the same for both regions as
follows:

(17)

The above relation is identical with (9) or (10). As follows
from (12) and (17), the tangential components ofshould
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also be continuous functions , and can
be calculated explicitly as

(18)

Substituting the Lorentz’s gauge condition in (18) leads to the
relation

(19)

The continuity of the scalar potential implies that the same
value for would be obtained if the equation

is used. Once the tangential components are updated, the
values of the component at the conducting patch are
computed using relations identical to (7) and (10).

It must be noted that although the procedure for the calcula-
tion of the component at dielectric-to-dielectric interfaces
and at infinitesimally thin floating conductors is the same
as it follows from the continuity of the scalar potential, the
procedure for the tangential components is entirely different,
as is seen from (8) and (19). While at dielectric-to-dielectric
interfaces, the components are self-dependent, at conduct-
ing interface patches they depend on the normal derivative of

. The points at such patches become points of generation
of under the influence of . When the interface patch is
immersed in a homogeneous region no longer
depends on [see (10)], but it still generates the values of
the tangential components through (19).

5) Conducting Bodies of Finite Size:The application of
the boundary condition (12) at the surface of a conducting
body of a finite size is less complicated than the previous
case. It includes the condition

(20)

at all surface points not coinciding with wedges and corners.
Since the tangential components are again obtained by (19), it
can be shown that coupling among thecomponents appears
exactly at the edge points of the surface. This phenomenon
is best described when the component is displaced from
the components by a half-space step along the
coordinate. Here, denote
the respective components of (see Fig. 1). In the case of
infinitesimally thin conducting patches, it is numerically more
convenient to adjust the meshes of the normal and tangential
components so that they coincide along the axis normal to the
patch.

III. N UMERICAL IMPLEMENTATION

A. Discretization of the Space-Time Domain

For the analysis of the planar structure in Fig. 2, the
meshes of , , coincide along the -axis. At every

plane, the components are displaced by half a
step, as described at the end of the previous section and
in Fig. 1. This displacement gives the most exact numerical
treatment of the surface operators and by a central-

Fig. 1. Space displacement of~A components at ax = const plane.

Fig. 2. Computational domain for the microstrip open end.

difference scheme. These operators are encountered in the
boundary-condition relations (10) and (19).

All three components of are calculated at the same
moments of time . This also refers to the field.
The electric field is calculated at , as
follows from (5). The field vectors are not needed in the
basic algorithm. They are calculated for the purpose of post-
processing computations of the structure’s parameters only
when and where it is necessary.

The time-step and the space-step are related to the
higher speed of light in the structureby

(21)

where should satisfy the Courant stability condition

In the presented simulations,was set to . The space-step
has to be chosen small enough in order to obtain accurate field
behavior at discontinuities and at higher frequencies. Usually
the following recommendation is followed [8], [11]:

(22)

where is the shortest wavelength of interest.
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B. Defining the Excitation Pulse

The excitation pulse in the case of transmission-line prob-
lems is usually chosen to be a Gaussian pulse in time as
follows:

(23)

where is the temporal moment at which the pulse is located.
The Fourier transform of this pulse is a Gaussian function of
frequency

(24)

If frequency data are needed up to a maximum frequency of
, then the pulse must have wide enough spectrum to cover

the band. The value of must be chosen properly.
On the other hand, must be a function of the number of
time-steps from truncation to maximum of the time-domain
Gaussian pulse to ensure smooth enough launch of the pulse
[5]

(25)

If, for example, a truncation level of approximately140 dB
is desired, then has to be set to . We shall also require
that the spectrum of the Gaussian pulse at has at least
a value of . The relation between and
is readily obtained as

(26)

The temporal step is firmly determined by (21). Therefore, the
above equation can be written in terms of and as

(27)

where the ratio is set by (22). Equation (27) defines
the appropriate width of the Gaussian pulse in time.

C. The FD Wave Equation and Boundary Relations

Each component of the auxiliary vector
is calculated by an explicit FD scheme of the

wave equation [8]

(28)

where: 1) is the region index; 2)
is the FD Laplace operator; and 3) is

the excitation surface current (if present).
The excitation is in the form of surface currents because of

the normalization of in respect to the space step . The
time derivative of is first calculated as

The value of is then calculated as

The boundary values of the VP components are calculated
by the discretized form of the boundary relations given in

Section II-2. Here, the explicit discretized form of the bound-
ary relations at the dielectric interface only will be given (8),
(7), (10). Equations (13), (14)–(16), and (19) are implemented
in a similar manner.

The discretized form of (8) for the interface values of the
tangential components of is

(29)

Here, the superscripts denote the respective region, and the
subscripts give the position along the normal of the interface
which points from region 1 to region 2. In the derivation of this
formula, the second-order backward/forward approximation of
the normal derivative has been used as follows:

(30)

Equations (7) and (10) lead to the following expression:

(31)

Here, the operator represents finite differences
along the coordinate .

Once is calculated, the field vectors can be obtained by
the discretized form of (5) and (6) and used in the computation
of certain parameters of the structure.

D. The Transmitting Boundary for the Wave Equation

The ABC’s pose a serious problem for time-domain FD
schemes, and is still intensively studied. There are many
numerical approximations of the ABC, but they are either
with high memory and CPU time requirements, or their
performance is very much dependent on the angle of incidence
and dispersion of the propagating pulse. Here, it was chosen to
apply the first-order Liao extrapolation scheme [9], [10]. The
boundary value is thus obtained by a second-order Lagrange
interpolation of the field values inside the region at a point
where location depends on the dielectric constant of the region
and the parameter, which was defined in (21).

IV. RESULTS AND DISCUSSION

The results of the simulations of different microstrip-line
discontinuities are presented—an open end, a gap, and a
double change in the width of the line. The discontinuities
are described by the dispersion of their-parameters. The
dispersion characteristics of the homogeneous microstrip line
were also calculated using the incident-field transient data.

The geometry of the numerical region is shown in Fig. 2.
The excitation plane is at . The excitation is in the
form of electric currents, which are a Gaussian function
of time. While the pulse is launched, a symmetry condition
for and , and an antisymmetry condition for , are
imposed (magnetic wall). At a later moment, the radiation
condition is switched on so that reflections could be absorbed.
This moment is carefully chosen after the pulse is entirely
launched and before reflections could reach the back plane.
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Fig. 3. Relative guide wavelength�0=�g of a microstrip line:w = 0:6 mm,
h = 0:6 mm, �r = 9:6 mm. With boxes: empirical formula of Hammerstad
and Jensen [17], with crosses: empirical formula of Pramanick and Bhartia
[14], with triangles: results of Katehi and Alexopoulos [13], with diamonds:
empirical formula of Edwards and Owens, dashed line: current approach.

Fig. 4. Relative guide wavelength�0=�g of a microstrip line:w = 0:6 mm,
h = 0:6 mm, �r = 9:6 mm. With boxes: empirical formula of Kobayashi
[16], with crosses: empirical formula of Edwards and Owens [15], with trian-
gles: results of Katehi and Alexopoulos [13], dashed line: current approach.

Since all analyzed structures are symmetrical in respect to the
plane, a magnetic-wall boundary conditions are imposed

for at this plane.
The dimensions of the numerical region are: 1) width

; 2) height ; and 3) length .
Here, denotes the space discretization step,is the strip
width, and is the substrate thickness.

A. Dispersion Characteristics of a Microstrip Line

The analyzed microstrip line has the following dimensions:
mm, mm, and strip thickness is assumed

equal to zero. The dielectric constant of the substrate is
. This structure was chosen for the purpose of comparison

with data reported in [11]–[13]. The dispersion characteristics
of the line were obtained from the transient response of the
incident strip current and voltage at two reference points
along the line [11]. The relative guide propagation constant

Fig. 5. jS11j for the open end. With crosses: as in [12], with line: current
approach.

Fig. 6. Phase ofjS11j for the open end. With boxes: as in [12], with line:
current approach.

has been calculated as a function of frequency
and the results have been compared with those given in [13]
(frequency-domain calculations), with the empirical formulas
of Pramanick and Bhartia [14], Edwards and Owens [15], and
Kobayashi [16] (see Fig. 3). The results of the present method
are in very good agreement with the already existing data.

The calculations for the characteristic impedance are
presented in Fig. 4 and compared with those provided in
[13], with the empirical formulas of Edwards and Owens [15]
and Hammerstad and Jensen [17]. Unlike the results for the
propagation constant, there is quite a discrepancy in the
data obtained by the different methods. The results of the
time-domain vector-potential (TDVP) approach are closest to
the calculations with the formula of Hammerstad and Jensen,
which is considered to be one of the best approximations in
the computer-aided design (CAD) of microstrips.

B. Open-End Microstrip Line

The open-end discontinuity was also analyzed by the TDVP
approach for various microstrip lines. Here, the results for the
same microstrip line will be presented: mm,
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Fig. 7. Radiation conductanceG(f) of the open-end line. With crosses: as
in [12], with boxes: as in [13], with line: current approach.

Fig. 8. Normalized capacitanceC(f)=w of the open-end line. With crosses:
as in [12], with boxes: as in [13], with line: current approach.

mm, . The magnitude of is plotted in Fig. 5 and is
compared with the results given in [12]. The same comparison
is made for the phase of in Fig. 6. The results obtained by
the present method are in good agreement with those obtained
by the Yee FDTD algorithm for the magnitude of , but there
are differences in the calculations of the phase dispersion of

. That is why the complex was used to calculate the
equivalent conductance (representing radiation losses) and the
equivalent normalized capacitance for which data are
available in [12] and [13]. These results are given in Figs. 7
and 8, respectively. The curve obtained by the TDVP
algorithm has the same character as the one given in [12], but
it is shifted toward higher frequencies, i.e., toward the values
obtained by Katehi and Alexopoulos [13]. A shift toward
the frequency-domain results of [13] at higher frequencies is
also observed in the curve. Obviously, the equivalent
parameters’ dispersion is very sensitive to even slight changes
in the results for the complex reflection coefficient.

C. Gap Discontinuity

This discontinuity was also simulated for the microstrip line
from the previous cases. The gap width is chosen ,

Fig. 9. jS11j and jS21j for the gap discontinuity. With boxes: as in [12],
with lines: current approach.

Fig. 10. jS11j and jS21j for the double step-in-width, discontinuity,
�r = 10:2. With thick lines: measurements, with lines: current approach.

exactly as in [12]. The results for the magnitudes of and
are shown in Fig. 9. While there is good agreement in

the results for , results show substantial difference
especially at lower frequencies. However, it must be noted that
the almost linear behavior of the curve provided in
[12] is in some contradiction with the highly nonlinear curve
of at lower frequencies.

D. Double Step-in-Width Discontinuity

The discontinuity is simulated for a transmission line of
dimensions mm and mm. The dielectric
constant of the substrate is . The strip width changes
from to and back to . The length of the strip
with a width of is mm. This structure has resonant
properties and its investigation was important in order to verify
the validity of the approach when lengthy calculations with
multiple reflected signals take place. It is well known that
the accumulated numerical errors in time-stepping procedures
badly affect the late-time transient results. The reflection and
transmission coefficient of a real test line with the above
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parameters were measured in order to provide some basis
for comparison with the simulated data. The experimental and
simulation results are presented in Fig. 10.

V. CONCLUSION

A TDVP technique for the analysis of transient fields
is proposed in this paper and applied to transmission-line
problems. This numerical approach has the advantage of
decreased CPU time approximately 30% in comparison with
the FDTD method. A possibility for memory savings and
further reduction of computation time exists in applications to
specific problems like scattering and radiation from thin plates
and wires in a homogeneous medium. The advantages of the
VP time-domain analysis and its applicability to a wide variety
of problems is still to be investigated. So far, its feasibility has
been proven by the simulation of three types of microstrip-line
discontinuities. Further improving of the ABC’s and increasing
the numerical efficiency could make the algorithm a useful
numerical tool for the analysis of complex structures.
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